Planning rigid body motions and optimal control problem on Lie group SO(2, 1)

نویسندگان

  • Nemat Abazari
  • Ilgin Sager
چکیده

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions. Keywords—Optimal control, Hamiltonian vector field, Darboux vector, Maximum Principle, Lie group, Rigid body motion, Lorentz metric

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimal control problem for rigid body motions on Lie group SO(2, 1)

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a time...

متن کامل

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a spacelike curve in Minkowski space. In this case, the derivative of the tangent vector of the spacelike curve at a point s is taken as timelike. A method is propose...

متن کامل

Planning rigid body motions using elastic curves

This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will tra...

متن کامل

Planning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions

This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...

متن کامل

Singularities of Optimal Control Problems on some Six Dimensional Lie groups

This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a threedimensional space. A Lie group formulation arises naturally and the vehicles are modelled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically the three-dimensional space forms Euclidean space E, the sphere S and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012